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VLSI FLOATING POINT CHIP DESIGN STUDY

1.0 In'roduction and Summary

This report summarizes the results of a study undertaken by

the Hughes Research Laboratories to investigate techniques for

VLSI implementations of arithmetic algorithms. While most

attention in the VLSI era has gone to activities related to the

shrinking of design rules and the introduction of sophisticated

architectures, there is still a large contribution that is

avai able from the use of novel algorithms for performing the

arithmetic computations that underlie all computations. This is

ev oent from the variety of new arithmetic elements seen in the

newest generation of microprocessors, digital signal processing

ch;ps, special function arithmetic chips (e.g., multiplier,

div ,er), and co-processor chips.

Within the domain of signal processing there are two

artnmetic operations of particular importance, division and

sauare root. These functions are associated with such algorithms

as singular value decompositions (SVD), Givens rotations, and

varlo.s other orthogonal transformations. In this report we

:nvestigate techniques for performing division and square root

tnat are suItable for VLSI implementation.

In Section 2 we describe an algorithm for performing area-

time efficient division based on a serial/parallel organization.

We feel that this circuit considerably advances the state-of-art

because our study shows that we can compute at rates as fast as

sDec ai hardwired parallel circuits that use an order of

magnitude more area. These conclusions are based on the

comparison of division speed capabilities shown in Table I for

1



Table 1. Comparison of Division Capabilities

PRECISION I
CHIP SPEED (Asec) I (BITS) COMMENTS

21
lIntel 8087 1 39 164 (Fit. Pt.) 1280 x 280 mil

I(Stave Processor) (nMOS)

INS 16081 8.9 132 (Fix Pt.) I nMOS
(Slave Processor) I

I I I
HP I 1.2 - 2.4 164 (FIt. Pt.) I CMOS/SOS 2
(single" " chip 1 1 1210 x 290 mil

I I I
I I I I
Weltek I 5 - 10 124 (Fit. Pt.) 1300 x 290 Multi
(2 chip set) I I 1305 x 225 ALU I

I II
99000 I 4.9 116 (Fix Pt.) I
JA Processor I

I
I 21

HUGHES I 0.88 132 (Fix Pt.) 13 50x150 mit

monolithic processor chips. Here, our calculations assumed an

NMOS 3-micron technology, which is typical of that used in

D-esent day commercial semiconductor products. Unfortunately,

there are not a lot of special purpose divider chips on the

market with which to make comparisons. Considering that our

circuit consumes a minimal amount of area because of its serial-

oarailel organization (shift-and-subtract), it is clearly much

more area-time efficient than any of the other circuits For

eampre, the Hewlett Packard circuitl consumes an entire chip

(abc jt 35,000 transistors) yet is half as fast We have been

asssted in this activity by Prof M los Ercegovac of UCLA, who

oerormed the various algorithmic investigations.
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In Section 3 we describe "on-line" techniques for bit-serial

calculations. The advantage of this approach is that parallelism

is achieved by overlapping arithmetic operations at the digit

level and the associated feature that communication lines are

needed for only one digit for each operand mantissa. Our

investigation of the on-l ine approach was based on the numerical

requirements imposed by a rea .stic algorithm, singular value

decomposition (SVD). The -ps- ts c., this study, carried out by

Pau' Tu of UCLA, Indicate tit.at. mcouia- efficient on-line

approaches to complex algor tnms are promising. However, more

researcrh work is necessary be Dre aetaled Implementations are

possible. In particular it will be necessary to determine how to

deal with variable delays introduced by certain floating point

operations, such as addition and subtraction. It was also

conciuded that fixed point operations would be difficult for

compex on-line calculations because of the requirement that all

operands fall within a certain range, which would be difficult to

monitor during the course of the calculation.

Finally, in Section 4 we describe a variety of iterative

2 2
algo-ithms for calculating the square root of a number a +b

whcn is a very important calculation due to the need for

obtaining the sines and cosines used in Givens' rotations. This

approach, using suitable approximations for the first estimate,

can n fact be quite fast. We Have looked at several numerical

square root algorithms, all of which use some form of polynomial

approx mation to the first result It was important to use

technjaues that avoided loss of precision In the squaring of a

and b, yet at the same time did not invoke the use of conditional

3



branching. We found that by using a 4th order polynomial

approximation, only one iteration was needed to provide

sufficient accuracy for most calculations. The total time to

obtain a sin or cos function this way was equivalent to

approximately 13 multiplies.

4



2.0 Division

2.1 Introduction

As mentioned earlier, division is a very important operation

in signal processing because it is found in so many of the

various matrix factorization techniques, as for example Gaussian

elrir'nation. Even though only a small fraction of the total

ope-atic associated with any given algorithm might involve

div sto, it still must be given considerable attention becaus

the division (or square root) operations can "bottleneck" an

ent re computation when concurrent architectures are in use. An

exampAe of this is the systolic array which triangularizes a

mat- x. In such an array only a single border cell or column of

bcroer cells might be computing divisions; however, since all

processing elements (PEs) are operating In lock step, the slowest

PE *ill determine the overall cycle time. What is needed are

division and square root operations to proceed at the

muit i' cation rate, which is generally the rate limiting factor

ir a: the other cells If this were the case the system would

be ma, mal ly efficIent.

Te basic problem with division is that it is not possible to

ire -e it in the same way as can be done with multipi ;cation.

Tr.,s .s due to the inabi ity to -now what the quotient digits are

ahead of time. With multiplication the multipler bits are known

anead of time so that they can be processed at any convenient

tine AS a result, our approach will require that we simplify

*.' ouotient selection process sJcn that it is sufficiently fast

t'at DpreI ing would not speed p, ,jF ever f it were available.

i 5



Our divider circuit has been designed in such a way that it

f ts Into the overall framework provided by our Multiplication

Or ented Processor (MOP) chip 1 which already contains a fast

mutipl i:ation circuit. Our chp design approach s

characterized by a riumber o- 4 eatures First, all arithmetic

c 'cuts are ser al/paraiiel ./P) (e.g., shift-and-add types)

:.rat use radix-4 arithmetic ard have their own set of dedicated,

-Q speed clocks. The S/P Drganization saves a large amount of

space compared to a fully paral lel design, and the high speed

ocws and radix-4 operation are intended to prevent loss in

speed compared to the pure parallel approach. In addition, all

ar.tnmetic algorithms are intended to be based on some form

c= zarry-save type scheme in order to eliminate carry propagation

a,:-ss the full precision of the word. Each arithmetic circu'it

.as ts own set of dedicated control hardware, so that al the

crog-ammer is required to do ;s supply the arithmetic unit with

tne a-oropr ate operands. The h'gh speed clocks are synchronized

w t- respect to the slower system clocks which are responsible

or transferring data on chip and between chips We expect there

w be 4 to 8 high speed clock cycles per slower system cycle.

AI cocks are of the two-phase, non-overlapping variety.

There are two basic approaches to performing divisIon in a

conventional way. The Iterative or successive approximation

techriues use a fast multiplier to achieve quadratic convergence

rates Often one can use a look-up table to provide a good first

I J G Nash and K. Petrozol in, "VLSI* Implementation of a Linear
Dystolic Array," presented at ICASSP, March 1985, Tampa,
F orida.
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estimate. For every Iteration after that the precision of the

result doubies. While this technque is widely used, it does

exact a large price in terms of hardware. For this reason it is

usea primariiy in applications where large precision is required

and ,-o)st or chip area is not the most important criterion. The

other popular approach is based on recursive techniques in which

prec s on is proportional to the number of recursion cycles. We

fee that this is the best approach for us because it lends.

tse ; to very area-time-effcient VLSI Implementation and

because we feel that we can obtain division rates comparable to

our muitiply times, which is not the case for the iterative

:e,zrr ode. For concurrent architectures the issue of integration

s a very important one because large numbers of PEs are required

to ac' eve high throughputs. If each PE were excessively

comp ex, then the overall system could become unwieldy.

Ir, add tion, our relatively simple S/P bit-slice arithmetic

un ts provide an important degree of system modularity in that it

.s a very s mple task to configure a PE with a variety of options

"csza, as arlthmetc units and memory are concerned. This is

-portat oecause we feel that it 's unlikc!, that a s~ngle chip

w 'satsy a varety of system requirements, In other

words each corcirrent, system implementation mioht be tuiit from

the same basic cr.,p modules (multipliers, dividers, adders,

registers, etc,., but the actual PEs would be different

7



Ae raB'e o~ea at tnree a rrtrecurs~ve o vision

a jo'-thms, the radix-2 2an-d -aaix-4 SRT, 3and t~ne prediction

t e.hnique of Ercegovaci 4 Th-e SRT approaches are the bas~c

no--estoring shift-and-subtract, tecnniclies. Tabie 2 presents a

ccmpar son o_- tnese approacires (n terms of important parameters

and ifgues ofr merit. Here -the S/P muilplier is used as a basis

orcomparison. As can be seen, the -adx-2 SRT approach is the

s-rnp est, but is the slowest On the other hand the prediction

,able 2 %Omparson ol d' son algorithm~s (n =number of bits) in terms of importanit VLSI
pe-ameters Here CPA refers to fu!! Precision 32-b-t add times to propagate carry~
Reat e area estimates are app'-oxmate at best

TCFA DE51GN I 7A7E 291 RLTV
# i UNVERS10t. COYPLXIThPEA 1:EiIVISIONI DIVISION IAREA-71VEI

* PEC!JRSTflNPECIJSIONSIREQUIPED ? I 'V&JtT I AREA ITI'vE ITIME (msec) I PRODUCT I

S " I No 1.5 1.1 Ion' 1.9 21

45P -2A j No 2 I 1.3
Pad '-4

POED1:. xc7' i 8 ves- 4 02 i3n,6 0.88
ir " -CPA

kSJ' -,, '1 's 10 1 0 !S-,/2
I .CPA

2 CP--_fer'jscn, "A New Cl ass of DitalI D, v s :r- Meth)ods,
:HEc' Tr-ars Elect. Comr., EC-7. pp 218-22', S ezt 19se

3 J E Pcz.person , "Meti-ods c- Selection o-f Quotert Dgts
g)~ gDg '-aI Disi, " Dept Comp. Science, Unv I Ili no 1S.

4 V )Eca~r "A Higher Radix D. irsion with Simp re
~e e Ir 7 or FJ Qj )t , Dis " P-r:c 6thi SYmposum r_- Computer

E :v-'e~~ a- 7'c T ar-], "a'- Div-siorm *l.' Range
+' ur Man i-," _[ t , r she d mer..sc ct iD, August 1984

V ) E' q~a arna T L ating, "Pari -e Trarisfer Tlat I 0 rl C 'i the
J SC zr, .~ t shed mnanusc~t e-mir 19H4



technique is the most complex, but has the shortest division

time. All have approximately the same area-time product. Since

a basic requirement is that division and multiplication times be

as balanced as possible, we tend to weight the absolute division

time more highly than area-time product. We have assumed for

purposes of comparison that the carry propagate adder (CPA) time

Is 125 nSec (8 MHz) and gate delays are 6 nsec.

9



22 Recursive Division Algorithm With Prediction

2.2.1 Introduction

In this section we describe the division algorithm and its

implementation in terms of NMOS circuitry. More detailed

description is provided in Appendices A - C containing reports by

Prof. Milos Ercegovac.

The essential requirement necessary for a fast recursive

div'der is a fast recursion time. This speed is usually degraded

by the time required to perform the selection of the quotient

d,gIt for a particular recursion For radix-2 operation this Is

not too difficult, but for radix-4 approaches this becomes more

compiex, resulting in long loop times. Typically, there are

three basic steps in each recursion,

R[i+1] = r(R[i] - q.X) (1)

where X is the divisor, R[i] is the partial remainder of the th

step, R[O]=Y is the dividend, q, is a digit of the quotient, and

r s tre radix. Here the quotient digits must satisfy

p ' c. < p, p being digit set maximum. These steps are listed

beiow"

I Form q.X

2 Subtract and shift to obtain R[i+1]

3 Use quotient digit selection process to obtair: qi+] from

R[1+1]

The prediction algorithm uses two techniques to speed up the

set of operations described above First, a new quotient digit

selection procedure is introduced that requires only truncation

10



or rounding of a limited precision partial remainder to obtain

q. . Second, the quotient digit is obtained by avoiding explicit

eva uation of (1); rather, it is obtained from the expression

q+l = round (r(R[i] - q.))

where R[1] is the low precision, non-redundant representation of

the remainder. Here "round" means that q. + is selected from a

rounded and truncated version of the result. Since q. is simply

an integer, the subtraction is simple. Consequently, the maximum

step time for the recurs on loop is given by the largest delay

time associated with either the quotient selection process or the

carry-save evaluation of the new partial remainder. In other

words there are two separate operations occurring at the same

time, so the step time is

T =ma(t + t + t, t + t + ta q I' s cs I'

whe-e

ta = time for assimi ation of R[i] (carry propagation,

-6 bits)

t = time to subtract and round

t = time to select divisor multiple

t cs= time for carry-save subtraction

t I = time to load registers.

In order to perform the algorithm in this way, it must be

d I 4 dea into two parts, range transformation and recursion.

F, st, for the simple quotient digit selection process to work,

it :s necessary that the dividend X be transformed into a range

11



- <) <X < (1 + a)

where a is a number on the order of 2-6 to 2- 9 and X* is the

transformed divisor. In the remainder of this section we

describe the two basic parts of the overall algorithm, with

particular emphasis on circuit implementation. More detailed

discussion is provided in Appendix A-C.

2.2.2 Range Transformation

We have looked at several approaches to performing range

transformation (Appendix A-C). In this section we discuss the

one "hat appears most promising, that based on reciprocal

approximation by power series.

The problem here is to compute a transformed division X* that

satsfes the relation X* - I . The reciprocal

approximation approach finds a multiplier M such that X* = XM, so

that t-is relation ;s satisfied. To do this we divide the

Oivsor X into two parts, XI and X2 and set

d =: X + 2 X2

wnere

X, = (1 2  Xkl 1 )

X 2  = (O.Xk+ 2  Xn)-

Then a simple series approximation gives

R1 /D = R1 R2 X2 - e t  (2)

12



where

R s/X 1 truncated to u bits
'\2 2
Ri s (R1) truncated to s bits

X is X truncated to v bits
2 2

e, is the truncation error.

Note that our definition of X assumes that it is normalized1

so that the most significant bit is a "I." Since we are using

fixed point arithmetic, this implies that a shifter network will

be required Ps a front end to the entire divider to perform this

ooeration. This network wil not be described here since details

7
are already given in a previous report.

"'
The values of R 1 and R 1 can be obtained from a PLA with X 1 as

ar -,ut In Table 3, values of R 1 and R1 are given for the

ccce of truncation parameters, k=5, t=9, u=3, s=3, and v=3.

Once tnese have been obtained Equation (2) can be evaluated.

Then we can perform the multiplication XR to yield X, since R is

an aporopriately accurate representation of I/X. This

mui&p! cation will be performed us ng the same carry-save adder

that is reauired in the second, -ecursion step

7J Nash and G. R. Nudd, "Des,gn Study of Floating Pcnt
fstolc VLSI ChIp," NOSC F na Report, Contract

No N66001-82-M-4120, September, 1983

13



Table 3. Values of R and R obtained from truncated input X1 .

A1  A2

x1x'z.r2r3Cp zoZ13z, z6Z7z8  wow 1w2w3

1.00000 0.11111111 0.111
1.00001 0.11111000 0.111
1.00010 0.11110000 0.111
1.00011 0.11101010 0.110
1.00100 0.11100011 0.110
1.00101 0.11011101 0.101
1.00110 0.11010111 0.101
1.00111 0.11010010 0.101
1.01000 0.11001100 0.100
1.01001 0.11000111 0.100
1.01010 0.11000011 0.100
1.01011 0.10111110 0.100
1.01100 0.10111010 0.011
1.01101 0.10110110 0.011
1.01110 0.10110010 0.011
1.01111 0.10101110 0.011
1.10000 0. 10101010 0.011
1.10001 0.10100111 0.011
1.10010 0.10100011 0.011
1.10011 0.10100000 0.011
1.10100 0.10011101 0.010
1.10101 0.10011010 0.010
1.10110 0.10010111 0.010
1.10111 0.10010100 0.010
1.11000 0.10010010 0.010
1.11001 0.10001111 0.010
1.11010 0.10001101 0.010
1.11011 0.10001010 0.010
111100 0.10001000 0.010
1.11101 0.10000110 0.010
1.11110 0.10000100 0.010
1.1111 0.10000010 0.010

14



Evaluation of equation (2) involves a 3 x 3 multiplication

(R2 X the result of which is shifted by four digits and added
12)

to R1. It appears easier, rather than to complement this result

and add, to first complement R and later complement the final

result. With this scheme we can begin to obtain the radix-4

multiplier digits of R immediately since there is no addition

being performed in these bit positions, as shown in Figure 1

This is convenient since we are going to perform the

COMPLEMENT

BIT
POSITION 0 1 1 2 3 4 5 6 7 1 8 9 1 10 11

R, Z0  21 I22 z3  2 4 z5  z6  Z7 81

I I 9 29 39

2^ 1 1 DISCARD
RI X2 8 P'28 P3

I C 5

I I 4-.- P1 7  P 27 P~37

I I I

RECODEDI
MULTIPLIER { M0 I M1 I I M M4

DRADIXI4) IA

Figure 1. Functional description of the evaluation required in

Equation (2).

multiplication begmnning with the most significant digit of R.

T-ls is very important because we can then begin our range

transformation algorithm before completion of the evaluation

of (2). Expressions of the recoded multiplier bits in terms of

A 25



tme variables in Figure I are given in Appendix C. These nvolve

simple circuits, typically with two-gate delays.

Since we will be using the same carry-save adder for division

recursion as for the multiplication required in (2), and since we

wli, be performing the multiplicat;on most significant bit first,

some of the product will be shifted off the left end of the

circuit (divider circuits shift left). However, since the first

7 bits of X* are either a "0" or a "1," only a couple of bits

wil be necessary to determine X'.

A biock diagram of the range transformation circuit is shown

F-gure 2. The PLA begins its operation after a signal to load

tle 0,vider circuit, "LD DIV." From this point on in the control

section, up to the generation of the "M" values, all logic is

combinatorial. There is a multiplexing shifter register that

r.s off the high speed clocks, 01 and 02' which supplies the

iecoaed multiplier bits to the buffer driver ("BUF") controlling

t e select on of the appropriate value of X (-2X, -X, 0, X, 2X)

to ao to the carry-save adder. After the "LD DIV" signal has

g.one iow, this multiplexer starts with M = 0 as an input. A

2-1c-cut for determination of RIX 2 is given in Append x C,

Figure 2a, which is built from simple full adders. The PLA is a

straightforward 5-input, 10-output structure, with an estimated 5

gate delays associated with it. We have performed a first order

ana yss of it using a standard AND-OR plane approach Using an

est ma-e of approximately i6 X 2 microns per cell, where X is one-

'3
1' tne feature size in microns, we estimate that the entire

2
s' ucture would consume an 11 X 11 ml 2 area. Since the input to

t-e PLA comes from high capacitance bus I nes, there would be no

need for large buffer drivers as input to the PLA

16
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Table 4 Estimate of the number of gate de!ays from

transformation initiation until generation of M.. Here
we assume a 32-MHz clock and 6-nsec gate delays'
(3,a NMOS).

Availability of M I
I After Start lElapsedl

ITime I Time

C~ock Cycle OperationlIn Gate Delayst(nsec)I(nsec) I Operation

1 PLA 1 5 1 31 30 IMult M =0

2 Gen M 0  5 1/2 1 33 1 63 IMult M 0

3 Gen M 1  15 1/2 1 93 1 94 IMult M 1
4 Gen M 2  15 1/2 1 93 125 IMult M 2

5 Gen M 3  13 1/2 1 81 1 156 fMult M 3
6 Gen M 4  11 1/2 1 69 187 Mult M 4

After generation of X*, which is now in carry-save form, it

s necessary to send it to the CPA, where it will be transformed

Into non-redundant form for use in the recursion step next.

2.2.3 Division Recursion

The basic Idea in speeding up the recursion operation is

to -se a 'edundant number representation for the quotient digits

so ttat a quotient digit can be selected at each step using a

i.mted p-ecision estimate of the partial remainder. This

mp es that rt is not necessary to perform a full precision

subt'action at each recursion step, thus avoiding the time

consuming carry-propagation across the entire word. Instead a

ca-ry-save approach can be used along with a small CPA circuit in

the most significant bits (typically 6) to determine the limited

prec son estimate of the partial remainder One can use this

aoproacs and obtain q +1 from

q =l round (r(R[i3 - q X*)) (3)
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where R-tl 's a limited precision estimate of the partial

remainder. As mentioned in the introduction, using this approach

is compi cated in that it requires the evaluation of q . One

can sacrifice additional precis on and compute q. + from the

express on

q i- = round (r(R[i] - q.)) (4)

Whi le '4) is easier to evaluate, it requires more complexity in

the -ange transformation due to a decreased value of a.

T-ie vatue of a is determined by the degree of precision in

trese es%,mates. There are various tradeoffs here associated

ot- tre choice of precision in R[i], which are explained more

; -W " Appendix B. These tradeoffs can be represented by the

expDess on

< r(r+l) (1 - (r- P)

e s a measure of precision of RE*] and q, in preaicting

jr(R[i] - q , - q. < P

T.S. -e ucirtg tre precision of R (corresponding to simpler,

Caste- c -cuitry) implies an increase in P or a decrease in a.

T'-,e sma er val ue of a means add'itional precision required in the

-a-ce t-a-sformaton process described in Section 2.2 Typically

-8 -9
e a *ue -.f a woild be 2 to 2

A aie l ooked at a variety of rasr- rir-ruits for

:a :- at rs based or, (4) Here we describe what, we consider the
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most efficient implementation of triese. The basic scheme is

iiiustrated in Figure 3, which shows the flow of information

through the divider and Figure 4, which provides a more circuit

oriented representation. In Figure 3 it can be seen that there

are two paral lel paths of computation producing the two results

qi+1 and R(i+1]. The set of computations to produce q i+ are

1. Propagate (assimilate) carry to produce R[i]

2. Subtract q. and shift to produce r(R[i] - q.)

3 Round result to generate qi+1

The operations in the other path are as fol lows:

1. Select appropriate value of X*(qiX*) as input to

CSA

2. Perform carry-save subtraction to yield R[i+1].

A n oc diagram of the operations required for the qi+ 1 path are

, st-ated in Figure 5. The CPA addition can be carried out

,jsra a "relay-type" adder as shown in Figures 6 and 7- This

type . adder is relatively simple, yet carry propagation is fast

s r e :arry in-ormation ,s propagated by transmission gates

(Details or, this adder are provided in Ref. [7] ) The carry-in

rout tr this CPA requires a small amount of logic as described

in Apz~erdx B.
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F gure 3. Functional block diagrarn of recursion operation data

f ow
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B

A B AGDB

AQDB 0 0 1

A(DB = 1 1 1
0 1 0
1 0 0

Figure 6. Exclusive OR circuit.

A,+1  61+1 A, BI At 1  B 11

KI = Al+B,

P, = AI '

Figure 7. Carry propagate adder used to obtain R_

After assimi~lation, it is necessary to do subtraction of q,

followed by shifting and rounding. If we set

P = (R[]-q (P-2' P-11 0') P 1) and q = (Q-20 Q1' Q then

the subtraction corresponds to obtaining P_2 from

P_2 = R Q0 [i]
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ad the remainder of the P values are simply obtained by shifting

the RCI] or

(P-1, P0 ' P) (RI' R2 P R3 )

The quotient digit is obtained by rounding P if 't is smaller

than 2 and by the integer part of P if It is equal to or larger

than 2. This corresponds to the following expressions for q.+1

as

Q-2 [ 1+1]= P- 2 (R 1  + R 2  + R3)

= P_2R1 + RIR 2 + RIR3 + R R 2 R3

QO[ I + 1 ] =(P-2 + R1)(P-2+R1 ) (R 2 +R 3 ) (R 2 + R3 )'

wre-e "'" Indicates complement. These expressions can be mapped

rtc the circuits shown in Figure 8a-8c, where we have rewritten

some c the switching expressions for more efficient circuit

,rz ementatlon As can be seer, the subtraction and rounding can

-e ce-Formed in about two gate delays
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R*0 2 P -

R3

- -2 h+11 =P- 2  +R IR 2R 3

R R

-1 1 = P- RIR 3 + R 1 R 2R3

1b)

00Q0 f + 1

P , R

P2R 1 -p2 1 '2 3 ' 2 3

IC)

Fg~re 8 Circuits and logic expressions for calculation of

quotient digit q i1 = (Q- 2 , Q-1 , Q0)
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The second parallel computation path involves the selection
* *"

of the appropriate value of X* (e.g., qiX) to add into the carry

save adder in the bit slice array. This involves the use of a

decoder that takes as input q. and then drives one of 5 lines,

which are running across the bit-slice array. These lines are

connected to multiplexers in each bit slice which select -2X, -X,

0, X, or 2X as shown in Figure 9. The full adder cell shown in

Figure 9 can be built as shown in Figure 10, a circuit presently

used in our S/P multiplier. We estimate that the total gate

delay through this second computational path to be about 6 gate

delays, 4 for the qX* operation and 2 for the full adder

operation.
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BU B LD X

BUS A'

x 
2

II

-- 2 x

T - x

f ____________________

Li I BUS A

DRIVER' DRIVER

CIN COT OU N

INTERCONNECTION NETWORK

Fgqureg9 Divider bit-slice cell conta nngX *register,
multiplexer, full adder and carry, sum register. Here
clock superscripts f and s refer to fast and slow
clIocks.
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VDD ,

VOI 01Si O

C ECARRY

VDD

Figure 10. Tentative design of carry-save adder for use in
divider bit-slice. Inputs to this cell are sum bit,
S. , carry bit C. , and divisor bit X.

Ir Figure 9 we see that the value of X" is taken from Bus B

ard saded into a latch. This result comes from the CPA after

tne -ange transformation. The necessity of performing a CPA to

c'oduce a non-redundant X" is an important consideration because

t?')s s a relatively slow operation. That is, after range

transformation, the carry-save value of X* must be transferred to

tne CPA by the slower system clocks, followed by another transfer

Dack to the div,der after the actual CPA is required. As shown

Taoie 5, wnich tabulates the overall division speed in terms

S" tre number of high speed clock cycles, assuming the high speed

clocks are four times faster than the slow speed clocks, this
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round trip operation to get a non-redundant X* is considerably

time consuming. For this reason it would probably be more

reasonable to include a dedicated CPA internal to the divider to

avoid this delay. Although we have not achieved our goal of

equalizing multiply and division rates, Table 5 indicates that

the rates are comparable. Some time is saved in the division

operation because the quotient digits are converted back to non-

redundant form as they are created, so that a final CPA is not

necessary as with the multiplier.

Table 5. Division and multiplication times assuming 32 MHz and

8 MHz arithmetic and system clocks.

Number 32 MHz Clock Cycles

I Dvson. External CPA Internal CPA

Transformation 6 6

Transfer to CPA 4
CPA Operation 4 4

Peturn from CPA 4

Recursion 16 16

T:tai Cycles 34 26
Tstal Time 1.1 asec 880 nsec

Mu tpi ication:

Recursion 18
CPA Operation 4 -

Total Cycles 22
Total Time 730 nsec

Oe ssue treat has -iot been discussed is that associated with

SCers,on Of quotient digits to nor,-redundant form We expect

t'at tS s can be done in an "on-the-f!K" manner, so that the

.a a,jot,(ent would be available immediately after finishing the
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recurs on ioops We also expect that as part of this operation

*e can perform the necessary corrections associated with the

initial normalization of X required before beginning the range

transformation operation

Based on the previous discussions we estimate that the total

number of gate delays per recursion will be approximately six.

Assuming a 3-micron NMOS technology, corresponding to

approximately 5 nsec per gate delay, the clock speed of the

aritnmetic units would be approximately 32 MHz. The

corresponding slow or system clocks would then operate at 8 MHz

Ustng these values we estimate the divider speed for 32-bit

xed-point operation would be 880 nsec. We compare this speed
to data available on other, commercially available circuits in

Tabie 1. For the purposes of comparison we note that the Hewlett

Pacvard circuit is a dedicated divider chip based on a fully

para-lel, recursive implementation. As can be seen, our

tentat ve design compares very favorably in terms o- speed with

a! t e other multiplier circuits. However, from the standpoint

c area-time product, which is more appropriate for VLSI

rmp ementation, the comparison is evPe more favorable

Th s divider design is very efficient in its usage of area

becaise the range transformation and recursion steps share the

same carry-save adder. This adder circuit will be comparable in

size to that used in our S/P multiplier because the range

t ars-,rmat 1'- and recursion steps sl- are the same carny-save

adder Compared to ojr S/P muitipier, the divider wi have

etra crcu.try associated with the front,-erid normaIz~ng circuit,

and a register to store the quotient digits as they are
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generated. In addition, more area will be required outside the

bit-slice array for control operations. We estimate that

approximately 150 x 50 mi 2 area would be necessary for a

3-o NMOS design of this circuit.
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3 0 lmpiement Ing the SVD Computation Using On-Line Ar'ithmetic

3 1 Introduction

On-line algorithms perform arithmetic operations In a digit-

ser~at fashion. The operands of a computation come in one digit

at a time, with the most significant digit first. After a small

number of 'input digits have arrived, the most significant digit

of the resu~t is generated, and thereafter one more digit of the

result s gener-ated in each time step. On-line algorithms for

aaaori~htactonmultiplication, division and square root

~e~t os have o~een developed and simulated by Watanuki

Razi-aver,dra and Ercegovac, 9Trvedi and Ercegovac 10and

* -:,cza and Ercegovac 1

0- ne arithmeti- algorithms have two very attractive

reat.-es The first feature is that parallelism is achieved by

,De- a :png arithmetic operations at the digit level. A short

-j -v af*.er- the first digits of the operands have arrived, the

D saaK Wataiul i , "Floating-pontil on-line arithmetic for highly
:s~ ~'etd'git-serial computation: applicati;on to mesh

w-p rrmsj' Report No CSD810529, Computer Science Dept. UCLA,
Maf, 1981

9 C2Rargavendra and M. D. Ercegovac, "A simulator for on-
rarithmetic," Proceedings of 5th Symposium on Computer

A- thmetc, May 1981, pp 92-98.

10 102 Tr ved iand M D Ercegovac, "On- line algorithins for
ci r)- andi mu It Ir; '-atI or, IEEE Trans on Computers,

-O -26, N- 7, J, y 1977, pp 681-687

1; 01 C 1 o~cbdz ja and M D. E rc~qova,: , "Afi on- I m e squa re root
,j or th, " IEEE Trans. or-, mpt~ Vol C-31, No 1,
Jar 1982, pp 70-71D
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rst aJgit of the result becomes available for the following

operations. Thus the computation of the operations which use as

,rvut the result of previous operations does not have to wait for

tne previous ones to finish. The second feature of on-line

ar thmetic is that since data is transmitted in digit serial

fasn on, communications lines are needed for only one digit for

each operand mantissa and the interconnection requirements are

areatIy redu-ed. This feature makes on-line arithmetic very

attractive for VLSI implementation where interconnection

-eau rement is of great concern-

In the fol owing we discuss some of the issues involved in

asc ving floating-point on-i ne algorithms to a processor array

,'z ementation of the SVD algorithm. The example we use here is

t-.e EVD algorithm by Luk, 1 2  which is implemented using a

ar ga_,ar processor array. For detai s of the design and the

a-.or tnm, please refer to the apove mentioned reference.

3 2 Or- n;e implementation of the SVD algorithm

Tre algorithm by Luk has two phases. In the first phase, the

ral- x s transformed into upper triangular form. In the second

z ase, the upper triangular matrix s diagonaized using 2 -sided

Jacob 'otatons. The algorithm is performed on a triangular

array P processors. The required computations for each node Is

summar zed as follows. Suppose each processor is associated with

4 -'a , , elements w  /I

iL F Lu- , "A tianqu jar proce-;sor array for computing the
-, rgular value decomposition," TR84-625, Dept of Computer

jc erce, Cornel I Univ , July 1984
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TrianguIarization phase:

diagonal node processor (caicuiat on of rotation angle)

w
p 4 - -

y

sinB sgn(p)

cose p sine

W,~ w COS8 +~ y sine

x -x cosS z sine

4- - ~ n + CC)S8

ion-aiagonai noDde zoes~'tt

W, A :CsE -±

4- :SH + z sine

4- -W s'nS + y C0s8

Z 4- -x snS z C0,58

D) a,.onalization phase:

diagonal node processor (calculation ot rotation angle)

w + z
P 4

cosJ 4 p 5 r1J

W - p =w cosiP

4-r z cosqW + sr

2q

t 4--sgn(OD) [IPI + +P
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V/1 + t2

si') 4- t costV

w 4- 1 :p Cos 2 4) r s In 2 1- 2q s In(Dcos4)

4- d2  p i .2 P+rCs2~ + 2q sin4cosl4

non-d'agonai node processor

W- w coslt - y snI)

4- w sin(P + Y COSIt

x 4 x.ciDSt - z s irl

Z 4- S In(P + Z C ()SJ

w 4-w cos'i - y' sin4

4- W', sinJ + y , zosqj

4-X'CSA - z sinS'

4w" cose - x" sinB

4w" sin8 + X" cos8

Y" Y" cos8 -z" sin8

z' '-, 4- s 'I H Z" C S

A c-Omputat on- tree cjar, be cieveioped for the computation

perf~r-med in e;-ch process-,r- ic, sho-.ws the data dependency

:7etwee- operatons and cr,v'ges a,! easy way to- est~mate the total

-'e deiay of th-,e comrutat pr A cmptatn tree fc, the

~~'ta~os f heda na: - va s P fc a d a g Dn a

P-ozcessor node is shown in Fiaure 11
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C*s

I p

so z asP x sinTI

r

sinsin*

q

F i ExF~ e te



+ d,

-2qin0~xs0

2qsinOs

Figure 11. Example of computation tree (continued)
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In each processor, one or- ne arithmetic unit is needed for

each arithmetic operation. This is because when performing on-

line arithmetic, the arithmetic operations are hlghly overlapped

and hence the hardware cannot be shared. Counting up the total

number of operations performed in each processor for each phase,

we have the number of on-line arithmetic units needed in each

processor for each phase as shown in Table 6.

phase diagonal node non-diagonal node

I 1 15 12

2 36 36

Table 6. Number of arithmetic units per processor

In floating-point on-line arithmetic operations, there are

two kinds of delays. One is the delay introduced by the

aigor thms themselves which is cal led the on-line delay and

denoted by 5, and is defined as the number of operand digits

needed for the algorithm to produce the first output digit. This

delay is affected by the degree of redundancy and the radix of

the number representation system used, and is usually a small

integer between 1 and 4. The second kind of delay is that due to

normalization of the operands and results, and is variable. For

our SVD algorithm, an estimate for the lower bound of the delay

of the computation would be that caused by the on-line delay of

each operation. According to [13], this is

TOL = + (6 1 + 1) td
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*nere L is the number of ievels of the computation tree, 6. is

the largest on-line delay of the , evel, n is the number of

cOgts to be calculated for the result, and td is the digit-step

time which is the time needed to load the input digits and

compute one d;git of the result

3.3 Processor organization

The architecture of the on-l ie arithmetic processor is based

13
on that given by Gorji-Sinaki and Ercegovac. Here we give only

a br ef description.

Each processor contains storage for 4 matrix elements, a

coba! control unit (GCU), and a number of on-line arithmetic

,ts (OLU).

Each OLU consists of an exponent unit (EU) and a number

(depending upon the precision requirement) of identical

orocessing elements (PEs). Each PE is a digit-slice on-line

a-thmetic unit. The structure of an on-line division unit is

snown r Figure 12, and details of the design are given in [13].

It s mentioned therein that the proposed organization is capable

of performing add/subtract and multiply with minor modifications

and rio increase in hardware. It can readily be shown that an on-

line division unit can also perform the on-line square root

algorithm. In Figure 12 the number of PEs is equal to the

Doeclsion required and the X and Y buses are used for

13 A Gorji-Sinaki and M. D. Ercegovac, "Design of a digit-slice
or-lirne arithmetic unit," Proceedings of 5th Symposium on

Computer Arithmetic, May 1981, pp 72-80
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correction factors applied to tne square root and division

operations. Also, e and e are the exponents.x y

LBUS L .....

Figure 12 Organizato of an on-ine division unit.

For each of the data elements transmitted between processors,

eac processor needs to have two sets of interconnection lines:

one or input and the other fo'- output. This is because the

comwectons cannot be sh-ared due to the computation overlap in

or-K;ne arthmetc Each set of connections for a single data

element ;nciudes I nes for the exponent, for one digit of

mant~ssa, and possibly some contro; line for signaling the

arr: a of data.

3.4 Remarks

Fiied-point vs. floating-pognt arthmetic:

In fixed-pont on-line arrthmetic, there are certain

'estr~ctons on the domain of the operands to guarantee that the

error Of the result is wthin certain range. Hence if fixed-

point arithmetic is used, the operands w I have to be converted
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to within the required domain before each arithmetic operation

starts and later the result wi I have to be converted back to get

the correct result. The range requirement may be different for

different arithmetic operations. Thus, fixed-point on-line

arithmetic induces substantial overhead and is not suitable for

complex algorithms. In floating-point arithmetic, on the other

hand, the algorithms always produce normalized results, assuming

the operands are normalized. Hence no extra work is needed when

a number of on-line operations are cascaded.

Computation of iterative algorithms:

When using on-line arithmetic to implement an iterative

algor-thm, the usual way to handle the iteration is to replicate

t -e hardware for the number of iterations desired. However, this

'is rot always necessary since usually only finite precision is

rea. red for the computation. In the case of the diagonat ization

Q-ase of our SVD algorithm, for example, the total on-line delay

o" the operations performed on a diagonal processor node is 34

og,9t-steps- Each iteration includes operations in the odd-

numbered rows of processors and then in the even-numbered rows.

Hence the time between the start of consecutive iterations Is 68

aig t-steps. If the required number of digits of the result is

less than, say, 60, then no replication of the processor array is

reeded. Likewise, doubling the array will allow up to about 130

Sg s of prec'sion.
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The dig~t-step delay:

The digit-step time, which is the time needed to compute a

single digit of the result of an arithmetic operation, depends on

the time needed for exponent calculation, for execution of the

recursion formula, for loading the input digits, and for

performing the output digit selection process. The exponent

ca~cuiation involves only fixed-point addition/subtraction, and

we assume that this requires less time than that required by the

mantissa digit computations. So the digit-step time is basically

determined by the time needed for the basic recursion formula and

the digit selection process An analysis of the digit-step time

.s given in [13], and we have the following formula

TSTEP = [8k + 7cel 1 nglog 2 (k + 1) + 24] 6 g

where the radix is r = 2 k and 6 is the gate delay. For k = 2 weg

note that the time step wi I I be greater than 40 times the gate

de ay This value is based on the time required to Derform a

car-y-propagate addition across some limited number of bits,

whltr depends on the selection rules and the precision

Typica ry, it might involve 8 - 9 bits for division. It is

*mportant to minimize the number of delays compared to that

associated with full carry propagation in conventional

arithmetic. For this reason we feel that less than 10 gate

de ays would be a minimally allowed value, and therefore more

Wori is required in this regard We note also that the number of

gate delays per time step is a function of the arithmetic

ope-at'on Hence, the time step associated with the slowest
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oDe-atl i W c e e-- -,e " e l, err *,me step, resulting in

*'e"ic ,e-t ,-5age c:f ra -ja -e

Or- inr.e ar thme- C .:2 :areI t. conventiona arithmetic, has

tne advantages of redj:eo .em--' c-aton requi rements and highly

,:ar ana ,niorm mi eme -a ,r 4 These advantages make

0 . e ar ti-met c '.in y s-*I a ,Ie For LSI/VLSI implementation.

The ccessor :.garizat or mertoned ,n this paper allows

reiJ cating tie basic PEs to form the OLU, each capable of

oe-'c,rm~ng some arithmetic creration, and then putting together a

nmjmber o OLUs, along with other components such as GCU, storage

devices, etc tc form a processor. This design is quite

f exbie and it is straightforward to design processors for other

cm-c-tat, ons

M:re study is needed for problems such as the accumulative

e -'- ehav::,r, on-I ,ne algorIthms for compound operations, and

waYs to 'andle the variable delay caused by both normalization

-11a tm -tr -,sugh paths , different length n the

F:"~ c r a OCeraton s

- s " e floatln point or-I ne arithmetic operation it

s rot neessary t,-, wzrr 9¥ about the problem of normalization of

operations ' e , for subtraction) because the on-line unit can

deal with c rcrrstances where cancel lation occurs in the most

gr ' ar . ,*S Hrwee?- -fr mul p e on-l ine ur, its, as for

eamie r, t V[) air -_ , , tlUis delay, which is variable,

d ,n probler T,,s must be handled with some

a:C t, rr ate -a-1 -snai ,ng techri q e, data buffering or data-driven

ty7>e ce'at, .r, wr, i ch , ncurs ewtra hardware overhead.
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Compound Operations

There are two basic approaches to implementation of an

argot thm by on-I ne techniques The straightforward approach,

on which we will base our analysis, uses a separate on-line unit

for each arithmetic operation (add, multiply, etc.), each with

its own set of selection rules. An alternative approach which we

nave not pursued, is to build an on-I ne unit for an entire

compound unit with its own selection rules. The

advartages/disadvantages of ths approach remain to be

aeter-mned However, there are possibilities that properly

c:osen primitives could provide ways of avoiding scaling problems

fo- Ixed point operations and synchronization problems for

fa'atng point operations.
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4 0 Aigoritmms for Square Root and for Tangent to Cosine

Conversion

4.1 Introduction

A step in the conversion of a coefficient matrix to upper

triangular form, by the method of Givens rotations, involves

computinc the sine and cosine of a vector angle from the values

of its x and y coordinates. The obvious approach evaluates the

relat ons

cos e X and sin 0 2

(x + Y )1/2 (x 2 ) /2

Or a fixed point computer, loss of accuracy can result from the

squaring of x or y in cases where these values are small. Also

the conventional algorithm for extracting the square root is time

consum;ng and becomes a bottleneck in the speed of processing.

T11s report discusses a number of algorithms which simplify

the square root process, and other algorithms which avoid it

altogether in the computation of sine and cosine.

4.2 Sajare root by polynomial approximation and iterative

correction

Approximating the function v/R over the entire range of

Possibe arguments is quite impractical. The problem can be

simp!fied by recognizing that the argument need only range

netween 0.25 and 1.00, since any positive number can be put in

tls range by repeated shifts of two binary places each After

tre square root is found, it can then be restored to its correct

range by an equal number of shifts of one binary place each.
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P Y Dr a appro ,mati ons tco the functi on

R 0 25 < N < 1 00

ca, ne found by library algor.thms which compute the coefficients

of the least-squares best ftting polynomial when given a set of

po:ts lying on the desired curve Starting with straight line,

pa-aboi c, or cubic approximations, the accuracy increases

-ough'V by a factor of 4 for each increase in the order of the

poomrr al up to the point where the computation deteriorates due

error In genera , the square root cannot be

.:a : ated to the full accuracy of a given computer by using a

r-- -Ier oo'ynomlal approxiraton. A better approach is to use

a Dwe- oraer polynomial to provide a "first guess input to a

Newtzr.-Raphson iteration formula

RP (N/R + R )/2
o 0

N is the given number.

P is the first approximation to the desired root.

1 ,s the second approximation to the desired root

The iterat on can be applied several times Each application

double the number of accurate places in the restult inti I the

. m-t set by the compute- register size is reached A tradeoff

m ust be made between the order of the polynomial and the number

of iterations required to bring the result to full accuracy.
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g i accuracy on a 32-bit computer can be had from a straight

' ne approximation followed by 3 iterations, or from a parabolic

approxmation followed by 2 iterations. Considerations involved

', makIng a choice will be discussed in a later section.

4 3 Tne reciprocal square root

Tne algorithms of Section 4.2 can be used wherever the square

root of a number is required. In the case where the result is to

oe -se: as a divisor, such as in the formula

Cos 2 2 1/2
y )I

t mrgnt be advantageous to use an approximation to the function

R-

foi owed by iterations using the formula

RI = (3 - N - Ro * Ro) * R0/2

It s found that attaining 32-bit accuracy requires using a 4th

orde- polynomial followed by two iterations. The storage

required for two additional coefficients and the two additional

multiplications required in each step more than offset the

advantage gained by eliminating one division
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4 4 Aigor tnm "pythag"

14
Moler and Morrison present an algorithrr which computes

2 + y 1/2 directly from x and y without taking a square root,

Initialize:

P = max (1-1, tyl)

Q = min (lx1, iyj)

Iterate:

S - Q2/(4P
2 + Q2

P =P 2 * S * P

Q=S-Q

After 3 iterations, P will contain the desired

result to the full accuracy of a computer with

less than 60 bits

The authors state that Pythag is potentially faster than

Newton-Raphson iteration for the square root because it is

cIbcal ly convergent compared with quadratic convergerce for

Newton-Raphson iteration This might be true if the result were

wan'ted to hundreds of places, but in real situations the

aovantage of Pythag is lost because of the greater amount of

czr-tation required per step of iteration.

4.5 Tangent to cosine conversion

The use of Givens rotations for matrix trianguia- zation does

2 1/2
-. t '-eqiire the evaluat-on of (2 y / f some more direct

14 "Replacing Square Roots by Pythagorean Sums," Cleve Moler &

Donald Morrison, IBM J Res Develop - Vol 27, No. 6,

Nov. 83, p 577.

48



*a-, car De founO to compute s -e arid cosine from the value of the

tangent.

We have found that th's car ce done by a variation of the

method described in Section 4 2 The method invoFves the use of

a Poynomial approximation to the function

cos 0 f (tan 0)

o ,owed by one or two steps of iteration using the formulae

U C 2  + (C "
0

3 - UC =
1 2 o

w ,e-e,

T = the given value of tan

C = the first approximation of cos 00

C = the se-onc approximation of cos 0

The va!,e of sin 0 s obtained from

sin = cos 0 tan &

Tre practicality of this method depends on the observation

t at the tangent need only range from 0 to 1 in the polynomia!

aDcroximation of cos (arctan 0), If y is greater thar , these

arguments need only be interchanged and the routine wi I compute

s,- from cotan 0. The cosine is then found from

cos 0 = sin & cotar 0
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,e r c ,e $ somewat CmP cat ed by the -eqarement to

sa4e the s qns of x and y and to ,nd the abso ute vaiues of

y ior use in the remainder cf the computation A comparison

o' these absolute values then cetermines if an interchange is

needec. A flag must be set to. .r~alcate that the interchange must

Ce u--ocre at the end of the compttatIon The original signs of x

a-a Y are then apDi ed dire:t. to cos 0 and sin & respectively.

4 6 Ta.- to cosine conversion

it may be possible to cesign chip hardware which will

ceterm -e the :reater of x and y in the absolute sense without

* -st comout rig aosolute values of x and y. If this is poss;ble,

s:re t me w I be saved in the execution of the routine. A

-sea e is that a sign w i! now be attached to the computed

e tan 0 The routine can be made independent of this sign

c -;s "a polynomiai appro mat]n of

cos 0 : tan 6

e teaton steps w I not requ,re modficatrn s rice tan 0

e e- s al- thp souare !r, the f.rmk a The signs of , ar.d y must

st e saved for resto-at,or, -'- ros 0 and sir 0. As tefore,

-, -anq of tar, 0 need ,r y Le f rom 0 to 1
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4.7 Summary of Previous Algorithms

1. Polynomial coefficients

a. Square root

First degree polynomial

R = 11/16 N + 11/320

With 2 iterations, error =6 x 10 - 8 rms

With 3 iterations, error 10 - 1 4 rms

Second degree polynomial

R = -0.316394414 N2 + 1.052146819 N + 0.2592483660

With 2 iterations, error = 6 x 10 - 11 rms

2. Reciprocal square root

Third degree polynomial
R = -2,439288044 N3 + 6.232249739 N2 - 5.912738903 N +

3.112778043

-9
With 2 iterations, error = 6 x 10 rms

3. Tangent to cosine conversion

Sixth degree polynomial

C = 0.114580644 T6 - 0.453009177 T5 + 0593659040 T

0.054354432 T3 - 0.493471808 T2 - 0.000296313 T + 1.000001911

With no iterations, error = 1.597E-6 rms

With 1 iteration, error = 6.10SE-12 rms
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4 Tan 2 t3 cosine conversion

Fifth degree polynomial

C = -0.031263642 T 5 + 0.128727929 T 4 
- 0.254304918 T 3 +

0

0 362943041 T2 - 0.498991485 T + 0 999983578

With no iterations, error = 7.678E-6 rms

With 1 iteration, error = 1.353E-10 rms

4.8 Estimated run times

In this section each algorithm is listed as a series of

steps, starting in every case with the values of x and y and

enaing with the output of sine and cosine The estimated number

of high speed (arithmetic) clock cycles for each step is

tabulated and the total elapsed time is given. A summary of

resorts if given here:

CLOCK
ALGORITHM CYCLES

1 a Square root with 1st degree polynomial 83

t Square root with 2,id degree polynomial 77

c. The above with 2 ALUs 60

2 Reciprocal square root with 4th degree polynomial 101

Algorithm PYTHAG 167

3 Tan to cos with 6th degree polynomial 103

4 Tar2 to cos with 5th degree polynomial 101

It s evident that lb and 1c provide the shortest run times. if

icss of accuracy due to squaring of x and y is found to be
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significant, then algorithms 3 and 4 can be considered. An

example of the actual operations performed for lb is shown in

Figure 13.

load x 1

square x 5
2

store x 1

load y 1

square y 5
2

add x 1

shift to range 2

store result (N) 1

store shift count I

mult by a 5

add b 1

mult by N 5

add C 1

store result (Ro) 1

load N 2

divide by R 16

2 tmes add R 20
shift 1 place 2

store result (R1 ) 1

shift to range 2

store result (x2 + y2 1/2 = D 1

load x 1

divide by D 8

store result (cos) 1

load y 1

divide by D 8

store result (sin) 1

77

F gure 13. Steps required to perform square root (method Ib).
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2 2 1/2
4.9 "Best" algorithm for computing (x + y ) , "HYPOT"

This can be written as:

r = x(l + 2 1/2 or as r <1 +

x

On a fixed point computer, the first form results in loss of

accuracy if x and y are small numbers. For example, on a

computer with 30 bits to the right of the binary point, numbers

which occupy only the last 15 bits will become zero when squared.

The second form avoids this error by performing the division

before the squaring. If only one number is small, accuracy will

be improved if this number is made the numerator of the fraction.

This is done in the first steps of the algorithm by taking the

absolute values of x and y, comparing them, and performing an

excraMge if required. The algorithm as described thus far can be

,sea with a conventional square-root procedure, and constitutes a

vaid method for avoiding the sauaring error.

The running time of the alaorithm can be shortened by

elm nating the conventional souare root and finding the result

b an iterative procedure. Given the expression:

r = x(1 + (y)2)1/2

we w i compute (1 + U) 1 / 2 where U = (y/x) 2 The argument U will

range only from 0 to I if the comparison and exchange of x and y

rave been performed as described above The function

f(U) = (1 + U) 1/2 can be computed by Newton-Raphson iteration
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f -(1+U + f 2
1 f-

where fo = a first guess,

fl = the improved value.

The iteration can be repeated any number of times, and at

each step wi I double the number of accurate bits. The most

efficient algorithm results if the iteration is performed only

once In our example this requires a first guess accurate to

15 bits to give a final result good to 30 bits.

The function (1 + U) 1/2 is a smooth function which can be

weKi represented by a polynomial approximation of relatively few

terms The coefficients of the polynomial are computed by the

east-squares procedure. This computation is done only once and

is not part of the algorithm. The resulting coefficients are

stored in permanent memory for use in the algorithm. The 4th

order polynomial is adequate to give 17-bit accuracy. The

DO:ynomial coefficients are

rms error:

ORDER 2
-0.070215334983
0.482062943591
1.001323600003 4.701 E-4

ORDER 3
0.024014900953
-0106237686413
0.496400319759
1.000158637158 5 125 E-5

ORDER 4
-0.010281085549
0.044577072051
-0*19412897544
0.499294445341
1.000020416187 6 240 E-6
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ORDER 5 rms error
0.004933240713

-0.022614187331
0.055513244505
-0 123484054442
0 499864663374
1.000002729927 8 124 E-7

ORDER 6
-0. 002537302797
0.012545149104

-0.031247590762
0.060093537381
-0.124615400309
0.499974514201
1 000000373098 1.106 E-7

ORDER 7
0.001367498511
-0.007323547587
0.019161948440
-0.035823977127
0. 061743633664

-0 124907280763
0.499995274613
1.000000051632 1.556 E-8

ORDER 8
-0. 000762269076
0.004416574816
-0.012297231345
0.023411232648
-0 037853839273
0 062278473297
-0 124978526529
0 499999135213
1 000000007192 2.242 E-9
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an the aigo-'thm steps are (4th degree polynomial)

load x
abs value

load y
abs value
compare
exchange (if required)
save abs x (or abs y)
aivide

square
save result (U)
mult by a

add b
mult by U

add c
mult by U

add d
mult by U

add e
save result (f )
oad U (shifteg)

add 0.5
divide by f
add f (shi(ted)
mult Ry abs x (or abs y)

Algorithm HYPOT computes (x 2 + y2 1/2 with 30-bit accuracy.

An essential feature is the division of y by x before squaring,

wIncn avoids the loss of accuracy associated with the squaring of

small numbers. The possible interchange of x and y at the

beginnng of the algorithm does not require the setting of a

log ca' flag, since the operation does not need to be "undone" at

the end of the algorithm. There is no need to scale and unscale

numbers except for two simple one-place shifts which do not need

to be undone.

Algorithm HYPOT may be compared with algorithm PYTHAG [14]

which ,s advocated by two authors at IBM. Both accompl ish the

same result but PYTHAG requires 147 clock cycles compared with 65

cycles for HYPOT. This corresponds to 13 multiply times, only

-six t;mes slower than if one had a hardwired square-root circuit

as fast as a multiplier.
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APPENDIX A

DIVISION SCHEMES WITH SIINPLIFIED SELECTI:; 

AND PREDICTION OF QUOTIENT DIGITS

Milos D. Ercegovac

August 3, 1983

Report No.1

1. Introduction

In a previous report, a paper presented at the 6tn IEEE Sym-

posium on Computer Arithmetic [ERCE83], a general division scheme

was presented, based on a divisor/dividend transformation tech-

nique such that the selection of the quotient digits can be per-

formed by simple rounding-

In this report we elaborate on the implementation and per-

formance aspects of a radix-4 variant. Of particular interest is

the fact tnat the next quotient digit can be obtained in parallel

with the next remainder computation.

The discussion and results discussed here are preliminary

ana require further refinement.

2. Divisor and Dividend Transformation

We follow closely the results from [ERCE83] in this deriva-
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> 0.0156
4r 2  64

so that the transformed divisor X is in the interv i 11-i/64,

1+1/641

The scaled remainders for the transformation are defined as

k-i
D = 4 (Xk-1)

where X = X. We want that IXp - II <1/64 or, equivalepfly, that

D P 4- P + 1 1/64. Assuming that IDpI 1, p=4

The expressions for the transformation are:

2X 0 1 if < 0.75

D X1 - 1 = X0  1 otherwise

That is, S0 < {0,1}.

D2 4D 1 + S1 + S1 D1

Equiva±ently,

5D 1 + 1 if S1 = 1

D = 4D 1  if S1 = 0

3D -1 if S1 = -1

D 3  4D 2 + S2 + S2 D2 /4
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D4 = 4D 3 + S3 + S3 D 3 /16

The transformed divisor is

* -

X = X4 = D4 4 + 1

The initial dividend is transformed using the following recur-

sion:

Yk+l = Yk (1 + Sk 4- ) k=0,1,2,3

gg1QO Q SI , S2 and S3

The selection intervals are determined by evaluating

Dk = (Dk+l - Sk) + Sk 4 -k+l)

for Dk+l = dmax/dmin and all values of Sk = -2,-1,0,1,2. Assum-

ing -0.99 < D4 < 0.99 we obtain the following intervais:

dmin = -0.99, dmax = 0.99

Selection Intervals for k= 3

s = -2, dmin = 0.2606452, dmax = 0.7716129, delta = 0.7716129

s = -1, dmin = 0.0025397, dmax = 0.5053968, delta = 0.2447517

s = 0, dmin = -0.2475000, dmax = 0.2475000, delta = 0.2449603

s = 1, dmin = -0.4898462, dmax = -0.0024615, delta = 0.2450385

s = 2, dmin = -0.7248485, dmax = -0.2448485, delta = 0.2449977

dmin=-0.7248484848, dmax=0.7716129032

Selection Intervals for k= 2

M.Ercegovac A-3 August 3



s = -2, dmin = 0.3643290, dmax = 0.7918894, delta = 0.791894

s = -1, dmin = 0.0733737, dmax = 0.4724301, delta = 0.1081011

s = 0, dmin = -0.1812121, dmax =  0.1929032, delta = 0.1195295

s = 1, dmin = -0.4058467, dmax = -0.0537381, delta = 0.1274740

s = 2, dmin = -0.6055219, dmax = -0.2729749, delta = 0.1328718

dmin=-0.6055218855, dmax=0.7918894009

Selection Intervals for k= 1

s = -2, dmin = 0.6972391, dmax = 1.3959447, delta = 1.3959447

s = -I, dmin = 0.131A927, dmax - 0.5972965, delta - -0.0999426

s = 0, dmin = -0.1513805, dmax = 0.1979724, delta = 0.0664796

s = 1, dmin = -0.3211044, dmax = -0.0416221, delta = 0.1097584

s = 2, dmin - -0.4342536, dmax = -0.2013518, delta = 0.1197526

dmin=-0.4342536476, dmax=1.3959447005

The overlap is indicated by "delta". A set of selection rules is

given next. In these rules, d and s denote the corresponding Dk

ana Sk, respectively.

Select S1

if (d<=-0.1) s = 1;

else if ((d>-0.l)&(d<=0.165)) s = 0;

else s = -1;

Select S2

if (d<=-0.33) s 2;
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else if ((d>-0.33)&(d<=-0.l)) s = 1;

else if ((d>-O.l)&(d<=O.l)) s = 0;

else if ((d>0.1)&(d<=0.39)) s = -1;

else s = -2;

Select S3

:f (d<=-0.36) s = 2;

else if ((d>-0.36)&(d<=-0.12)) s = 1;

else if ((d>-0.12)&(d<=0.12)) s - 0;

else if ((d>0.12)&(d<=0.36)) s = -1;

else s = -2;

3. Main Recursion with Quotient Digit Prediction

Once the divisor and the dividend are transformed into the

required range, we apply the following recursion on the partial

remaincers.

qi =IRi + signRi'*/2J

RI = 4(R i - qK)

where R0 = Y

A direct implementation of this recursion would require

three substeps:

(i) Select gi"

(ii) Generate qi*X' and
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(iii) Compute Ri+l.

However, it is possible to overlap the step (i) with steps (ii)

ana (iii). Assume that ql is known. Then, define the recursion

as

R i+]= 4(Ri -qiX)

qi~ = -141i qi+c)I

where

2 if qj

c = otherwise

Therefore, the recursion step contains only two substeps insteaa

of three:

Compute Ri+l I--------

Compute qi+l I

Compute qi+lX*l I----- I

-I---- > 1<--------

Step i-I Step i. Step i+1
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The overaij tjq of the main recurzion would looK like

I R I I R2 I R3 I ... I Ri I Ri+l . .

I q1 I q2 I q3 I ... I qi I qi+l

4. A Complete Radix-4 Algorithm

We give a C version of the complete radix-4 division:

#defire M 16
#define X 0.5
#define Y 0.07401786542
#detine R 4
#define K 1

main ()

double xO, yO, dl, yl, d2, y2, d3, y3,d4;
double quot, power;
float r;
double err, xprime, yprime, rem, remnext;
int i, q, qnext, sl, s2, s3, m;

xO = X; yO = Y; m = M; r = R;

/* Step 0 */

if (xO < 0.75

dl = 2.0*x0 - 1.0;
yl = 2.0*yO;

else

dl = xO - 1.0;

yl = yO;

/* Step 1 */

sl = selone(dl);
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d2 = r*dl + sl + sl*dl;

y2 = yl*(l + sl/r );

/* Step 2 */

s2 = seltwo(d2);

d3 = r*d2 + s2 + s2*d2/r
y3 = y2*(l + s2 / (r*r) );

/* Step 3 */

s3 = seltre(d3);

d4 = r*d3 + s3 + s3*d3/(r*r);
yprime = y3*(l + s3 / ((r*r)*r));
xprime = d4/((r*r)*r) + 1;
quot = 0;
power = 1.0;
rem = yprime;

if (rem > 0.0 ) q = rem + 0.5;
else q = rem - 0.5;

/* Recursion */

for (i = 1; i < m+l ; ++i{
remnext = r*(rem - xprime*q);
qnext = select(rem, q, xprime);
quot = quot + q*power;
err = yO/xO - quot;
power = power/r;
q = qnext; rem = remnext;

II}}

/* Select sl */

selone (d)
double d;{

int s;

if (d <= -0.1 ) s = 1;
else if (C d > -0.1) & (d <= 0.165 )) s = 0;
else s = -1;

return(s);

/* Select s2 */
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seltwo (d)
double d;
{

int s;

if ( d <= -0.33 ) s = 2;
else if (C d > -0.33 ) & (d <= -0.1 )) s = 1;
else if (C d > -0.1 ) & (d <= 0.1 )) s = 0;
else if (( d > 0.1 ) & (d <= 0.39 )) s = -1;
else s = -2;

return(s);

/* Select s3 */

seltre (d)
double d;{

int s;

if ( d <= -0.36 )s = 2;
else if (C d > -0.36 ) & (d <= -0.12 )) s = 1;
else if (C d > -0.12 ) & (d <= 0.12 )) s = 0;
else if (( d > 0.12 ) & (d <- 0.36 )) s - -i;
else s = -2;

return(s);

/* Select */

select (d, q, div)
double d, div;
int q;{

int s, k;
double rtrunc, dtrunc;
k = K;

/* Remaincer truncated to 6 bits; divisor replaced by 1 *1

s = d * 64.0; rtrunc = s; rtrunc = rtrunc / 64.0;
s = div * 64.0; dtrunc = s; dtrunc = dtrunc / 64.0;
dtrunc = 1.0;

rtrunc = ( rtrunc - q * dtrunc )* 4.0;

if (rtrunc - 0) { s = rtrunc + 0.5;0
else s = rtrunc -0.5;

return(s);
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5. Example

xO = 0.5000000000, yO = 0.0740178654, Q = 0.1480351308
dl = 0.0000000000, yl = 0.1480357308
sl = 0

d2 = 0.0000000000, y2 = 0.1480357308
s2 = 0

d3 = 0.0000000000, y3 = 0.1480357308
s3 = 0

d4 - 0.0000000000
xprime 1.0000000000, yprime 0.1480357308, q1 = 0

i Remainder q Quotient- Error

predicted next q = 1
1 0.1480357308 0 0.0000000000 0.1480357308

predicted next q - -2
2 0.5921429234 1 0.2500000000 -0.1019642692

predicted next q = 2
3 -1.6314283066 -2 0.1250000000 0.0230357308

predicted next q = -2
4 1.4742867738 2 0.1562500000 -0.0082142692

predicted next q = 0
5 -2.1028529050 -2 0.1484375000 -0.0004017692

predictea next q = -2
6 -0.4114116198 0 0.1484375000 -0.0004017692

predictea next q = 1
7 -1.6456464794 -2 0.1479492188 0.0000865121

predictea next q = 2
8 1.4174140826 1 0.1480102539 0.0000254769

predicted next q = -1
9 1.6696563302 2 0.1480407715 -0.0000050406

predicted next q - -1
10 -1.3213746790 -1 0.1480369568 -0.0000012259

predicted next q = -1
11 -1.2854987162 -1 0.1480360031 -0.0000002723

predicted next q = -1
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-1.1419948646 -1 0.1480357647 -0.0000000339

predicted next q = 2
13 -0.5679794585 -1 0.1480357051 0.0000000258

predicted next q = -1
14 1.7280821658 2 0.1480357349 -0.0000000041

predictea next q = 0
15 -1.0876713367 -1 0.1480357312 -0.0000000003

predictea next q = -1
16 -0.3506853469 0 0.1480357312 -0.0000000003

6. Binary-level Implementation

[to be done I

7. Pertormance Analysis

{to be donel

8. Alternatives

For transformation part:

- Have a small table of reciprocals of the truncated divisor,

perhaps to 4-6 bits; use three stages of CSAs to multiply

the divisor (2 bits per stage of the reciprocal); propagate

carries to get the transformed divisor; repeat for the dividend

but do not propagate carries.

- Use radix-2 in the transformation part; possibly much simpler

implementation.
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- Use radix-16 in the transformation part - details

worked out on the binary level; possibly fewer steps.

For recursion part:

- Implement two steps in one clock period; double

the combinational logic ( CSAs, selection and multiple generator)
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APPENDIX B

RADIX-4 DIVISION WITH RANGE TRANSFORMATION

M. Ercegovac and T. Lang
August, 1984 (Modified August 22)

The division algorithm described has the following characteristics:

0 Is of the typical recurrence type with a redundant quotient representation
with digit set between -p and p.

* Simplifies the quotient selection by restricting the range of the divisor to be

between 1- a and 1 +a.

* Improves the speed of execution by predicting the quotient digit.

The execution consists of two phases (Figure 1):

(1) Transformation of the divisor X into the range (1-ca) S X r (I+a) and
adjustment of the dividend.

(2) Recurrence to obtain the quotient.

In the next section we describe the algorithm and determine the value of a re-
quired to allow the quotient selection to be done by rounding. By reducing a further it
is possible to perform the rounding on a limited precision estimate of the partial
remainder. Finally we consider the possibility of predicting the quotient digit. For rcat-
ed references see (ERCE83].

The Recurrence Step and the Value of cz

This part of the algorithm consists in computing the sequence of partial
remainders

k[i+i1 = r(R[i] -qX) (1)

% here
X is the divisor,
R[01 = Y is the dividend,
q, is a digit of the quotient Q qo.qlq 2 " q,, with -p i; q. :S p.

B-1



The quotient digit q, is selected so that

JR[iJ-qjj ! 1 (2)

with 0 a constant to be determined.

Since the quotient digit is in the range -p to p, this selection implies that

IR(i)ls p+0

We now determine the restriction in the range of the divisor for which this bound
on the partial remainders is satisfied, and show that in this case the computation of the
quotient is correct.

Since

R[i+1] = r(R[iJ - qiX)

we can write

R[i+l] = r(R[i]-qi) + r(1-X)qi

and since R[i]-qI s 1, (1-a) S X S (1 +a), and Jqij S p we get

IR[i+111 S ro + rap

Consequently, for IR[i+ 111 S p+ P it is sufficicnt that

r3 + rap S p+O

which results in

a S (l/r)[1 - 0(r-l)/p (3)

Now we show that this value of a results in a correct quotient. The algorithm
computes the correct quotient if

l(Y/X) - QI < r-

Q = qr-
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By expansion of the recurrence we get
m

r = XIqr + r-'-1R[m+1]

Therefore,
(Y/X) - Q r-'(R[m+1/X)

and

(X) - Q z , Rm+1

Consequently, the quotient is correct if

Introducing the bounds on R[m+ 11 and on X, we get

(p+p)/(l-c) 2-- r

which is satisfied for the bound on a obtained before.
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Choice of P --,-d Predslon of Remainder Estimate

Since q, is an integer, it is necessary (from (2)) that P-1/2. For this value of 0 a
ful precision partial remainder is required for the selection of qj. A larger value of p
permits the use of an estimate of reduced precision. Let R[i] be an estimate of R[i] to
be used for the determination of the quotient digit. Assume that

A[] SR[iJ :S[i] + 8

Then to assure that IR[i]-qj I 1 it is sufficient that

I/[]- qjI < S

and
JA[i] + 8 - qjI :

Again, sinc q is an integer the smallest bound on 0[i]-qjI is 1/2, obtained by
using rounding on R, resulting in

18 + 1/2 2
and therefore

Consequently, to reduce the precision of R it is convenient to increase P. On the
other hand, increasing P reduces a and therefore requires more preadjusting steps. El-
iminating P from the expression (3) for a we get

a S (11r)[1 - (8+ 1/2 )(r- 1)/p (4)

In summary, in order to have jR[ij - qj :so it is necesary to preprocess X into
the range (1-a)-SX:-(1+a) and to use an estimate A[iJ with precision 8 to compute r,.
according to the function

ro n(I[ij) If integer(JI[iJD < p
q = [integer(R[ij) If integer(j[i] = p
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Quotient Digit Prediction

The division process outlined consists of a sequence of iterations. Each of these

iterations is formed of three steps (see Figure 2):

" Determination of the remainder estimate A[iJ in assimilated form

* Determination of a quotient digit q, (rounding)

" Selection of a divisor multiple qX

" Subtraction to obtain new partial remainder R[i+11 in carry-save form

The time of an iteration step is

T-- ta + tq + tg + tcs + tj

where

t, = time for assimilation off[i]

tq = time to round

t, = time to elect the divisor multiple

t= time of subtraction in carry-save form

t= time to load the registers

To reduce the time of an iteration step it is possible to precompute the quotient

digit in the previous iteration step. This results in an iteration step consisting of two

parallel paths. In one the next partial remainder is obtained while in the other the next

quotient digit is computed (Figure 3a).
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Using the quotient calculation procedure presented before, the quotient digit q, I

depends on R[i+ 11. In order to predict this digit it is necessary to base the prediction on

k[ij (and maybe X) since R[i+ 1 has not been computed yet. Since

R[i+11 = r(R[iJ-qX)

it is possible to determine q+. by

qj+ 1 = round(R[i+ 11) = round(r(R[i]-qjX))

which could be approximated by

qji = round(asim(r(R[ij-q.X))

(where round(a) is p if azp.)

This prediction does not produce a significant reduction in time since the path re-

quires the same steps as the iterative step without prediction: selection of the multiple,

subtraction, assimilation, and rounding (Figure 3b).

A more promising approach is to introduce an additional approximation and com-

pute the digit quo, ent as

q +1 = round(r(I[i]-q,))

This eliminates the step of selecting the multiple of the remainder and simplifies

the subtraction, since q, is an integer (Figure 4a). The time of a step is now

T = max(ta + tq + t , ts + t, + ti)

where r, now includes the subtraction of q, and the rounding.
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If the path for calculating qj+ 1 is longer than that to compute R[i+11, it is possi-

ble to balance the two paths by including the assimilation in the second path (Figure 4b)

and store g[ij. In addition, to reduce the critical path, it is possible to use faster circuts

in the slice required to compute R (even duplicating this slice to reduce the complexity of

the interconnection might be convenient). In this case the time is

T = max(t. + tj , t, + ti, + ta + ti)

Since this procedure of quotient digit prediction introduces an additional approxi-

mation (using q instead of qX) it produces the correct quotient if the divisor range is

further restricted, that is an additional limitation on a is introduced. We now determine

this restriction.

The basic recurrence for i + 1 can be written

R[i+2] = r(R[i11 - qj+IX)

Replacing R[i+11 in terms of R[i] we get

R[i+2 = r(r(R[iJ - qX) - qj+X)

This can be transformed into

R[i+21 = r(r(R[ij - qj) - qj+ 1 + r(1-X)qj + (1-X)qi+1 )

Since the prediction is done so that

Ir(R[i] - q,) - q, , I :s

and Il-XI:.a, lqj:sp, we obtain

IR[i+21i : r(P + rap + ap)
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Consequently, for R[i+21 p+o, we need

p +a r( + (r+1)pa)

which results in

1 - (r-1)) (5)
r(r+1)

which is 1(r + 1) times the value without prediction.
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Prediction of the Quotient Digit and Approximation of the Remainder EstimAte

To reduce the critical path in Figure 4b it is possible to compute an approximation

S[i+1] of R[i+1] instead of the exact value (of course this would require a further

reduction of the range of X to get a correct quotient). A suitable expression for S[i+11

is

S[i+1J = r(R[iJ-qi)

The calculation of S[i+1] is simpler than that of A[i-:1] because it does not re-

quire selection of the multiple and because the subtraction of qj is simpler than the sub-

traction of qX since qj is an integer. The resulting time is (Figure 5)

T = max(ta + t, , tq + tj , t + tes + ti)

The restriction on the range of X is now

1 [1- (r-I)P

r(r2+r+1) p

This value of a is small and would require many transformation steps for the

divisor.
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Range Transformation of the Divisor

The previous algorithm requires the divisor to be transformed into the range

(l- a) :5 X" :5 ( + a).

This transformation can be done by the following recurrence:

X[i+1] = X[iJ + si+,X[0]2-(+l)

with 1/2 s X[O]=X < 1 and 1-2-P < X[p]=X* < 1+2-P.

The selection of si+I is done by

(1 if Xdi]=O and Xi+[i]=O
sj+j= -1 If Xo[i]=1 and Xi+[i]=l

0 otherwise

Since Xj[iJ=X2 i]=...=X[i=X[iJ', it is more convenient to define

z[il = 21(X[i]-1)

and perform the equivalent recurrence

z[i+lJ = 2z[iJ + si+1X[O]

with z[O]=X-1 and X* = X[p] = 2-Pz[p] + 1.

Now the selection is
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If z1[iJ=1 and z2[i]=O

j+1 = -1 If zl[i]=O and z2[iJ=1

otherwise

We now determine the selection intervals and show that, since the intervals over.

lap, it is possible to use a z with limited precision for the selection.

Since 1 - 2 -k < X[k] < 1 + 2 -k , the range of z[k] is

-1 < z[k] <1

The selection intervals are determined by solving

z[i = 12(z[i+ 1] - s+ 1X[O])

for z[i+l] = ±1 and j+1 =-1,0,1.

Consequently

ji = 1 If ziJ e (-(1+X[O]A), (1-X[0))

-f += 0 f [11 e (-1/2,1/2)

= -1 If z[i] e ((-1+X[0])2, (1+X[0])/2))

Since 1/2 :5 X[0] < 1, we obtain the ir fer als of Figure 6a. Consequently, the fol-

lowing selection rule results

I f z[ij:5-1iV4
$i+1 = If -114<z[i]<114

1 z[i]z.l4

This results in an overlap of8 = 1/4 so -hat it is necessary to assimilate over posi-

tions 0, 1, 2, and 3.
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The dividend has to be adjusted in accordance to the transformation of X. That

is,

= Y(1 + Ms2-')

Instead of adjustiag the dividend, it is possible to adjust the quotient. That is,

compute Q" = YIX" and obtain the true quotient as

Q = Q*(1 + lsj2- 1)

The transformation process consists of the following steps (Figure 6b):

(1) Compute z[O] = X[O]-1.

For i=O,...,p do

(2) Determine s,+1 from an estimate of z[i].

(3) Select the corresponding multiples of X and Y.

(4) Compute z[i+ 11 and Y[i+ 11.

(5) Compute X' = z[p]2-P + 1
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Radlz-4 Implementations (with TTL Timings)

We now discuss the time and complexity for several radix-4 implementa-

tions. To compare them with the IT design presented by Taylor [TAYLS1] we

give timings using Taylor's delay estimates.

We choose the following parameters:

r=4, p= 2 , =/8 .

This results in

1=5/8 and a = 1/64 (without prediction) and a = /320 (with prediction).

The choice of p limits the divisor multiples required to -2,-1,0,1,2.

The choice of 8 requires a (assimilated) remainder estimate of 7 bits (3 for the in-

teger part and 4 for the fraction since a truncation of the carry-save partial remainder

after the k-th bit produces an error of 2X2-k). A better possibility is to truncate after

the 6th bit ane add a carry to this 6th bit. This produces an error of ±2-k.

If the resulting a is too small, especially with prediction, it is possible to increase

8 to 1116 resulting in 0 =9/16 and a= 1/128 (with prediction). The increase in 8 results in

a remainder estimate of 8 bits (or 7 if the ad, ion of the carry is done).

A) No prediction: carry-save remainder and carry-propagate estimate
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In this design we implement the partial remainder in carry-save form and com-

pute the estimate using a carry-propagate adder (CPA) of four bits and a two-level net-

work to compute the carry into the 4-bit slice (only 4 bits of the estimate are required

for the rounding). The selection of the quotient digit is performed by rounding the esti-

mate (Figure 7). The time estimate for TIT is:

-determination of estimate (4-bit CPA and two-level network) 30 ns.

- rounding (two gate levels) 12 ns.

- select multiple 19 as.

- carry-.-ave subtraction 12 ns.

.set register 5 ns.

TOTAL 78 ns.

This time canbe reduced to 70 ns. if the selection of the multiple is done by vec-

tor AND gates and a decoded quotient (11 as. instead of 19 ns.)
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B) Slice-save partial remainder and estimate

In this design the partial remainder is computed using slices of 2 bits with t e car.

ries between slices saved (Figure 8)(this 2-bit slice is compatible with the radix-4 design,

a 4-bit slice does not seem possible).

The estimate is computed from the 9 bits corresponding to the three most signifi-

cant slices (only 6 bits of the remainder have to be assimilated in this case since there is

just one bit in the 7th position (Figure 8b)). The estimate can be computed using a 4-bit

CPA and a 3-input AND gate (Figure 8b).

The TFL time is now:

- determination of estimate (4-bit CPA and one gate) 24 ns.

- rounding (two-level network) 12 ns.

- select multiple 19 ns.

- subtract (2-bit slice) 12 ns.

- set register 5 nsec.

TOTAL 72 ns.

Again the time can be reduced to 66 ns. by reducing the time for selection.

C) PLA for quotient generation

In this design the remainder is computed in carry-save (1-bit or 2-bit slices) form

and the 6 most significant bits (12 b. s or 9 bit) are used directly for the quotient gen-

eration (with a PLA)(Figure 9). The PLA probably has many AND terms since addition
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is involved in the function.

The TFL time is:

-computing qj (rounding) (PLA) 25 ns.

- select multiple 19 us.

- subtract (carry-save) 12 ns.

-set register 5 ns.

TOTAL 61 ns.

Reducing the time of selection we get in this case 53 as.

D) Second-level prediction

As m-ntioned before this prediction uses

qj+i = round (assim (r(R[iJ-qj)))

For the values of dhese designs the reduction of a is from 164 to 1320.

In this case there are two concurrent paths: the computation of qj+j and that of

R[i+ 1]. As mentioned in section x, the computation of the estimate can be included in

ary of the two; the choice being made in such a way that the critical path is reduced.

We c-nsider both possibilities.

Scheme I: Estimate calculation in q,+, path (Figure 10).
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The two paths are as follows:

i) Estimate and calculation of qj+ 1.

This path includes the computation of the estimate, the subtraction of q and the

rounding. The computation of the estimate can be done as in cases A) or B) (Figures 7

and 8).

The subtraction of q, and the rounding is done as follows: Let us call

P = 4(h[ij-q) = (P_2,P_ 1,PoP 1). Since we subtract and then multiply by 4 (and q, is

an integer), the sign of P is obtained by subtracting Q0 from ho, that is,

P- 2 = I V0 iJQo2il

The value of P is obtained by shifting A[iJ, that is,

(P- 1,PO,Pl) =

The quotient digit is obtained by rounding P if it is smaller than 2 and by the in-

teger part of P if it is equal or larger than 2. This results in the following table:
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R 3=1 R 3 =0

P- 2  Ji1  R2  Q-2 Q-I QO Q-2 Q-1 Q0

0tol 0 0 0 0 0 1 0 0 0

lto2 0 0 1 0 1 0 0 0 1

2to3 0 1 0 0 1 0 0 1 0

3to4 0 1 1 - - 0 1 0

-4 to -3 1 0 0 1 1 0 - - -

-3 to -2 1 0 1 1 1 0 1 1 0

-2 to -1 1 1 0 1 1 1 1 1 0

-1 too 1 1 1 0 0 0 1 1 1

From the table the following expressions result:

Q-2[i+11 = P- 2(01' + R2' + A3 )
Q-iii+1] = P-:R + R^R2 + '1 3 + R10 2R3

Qoi+1 = (P- 2' + I91)(P- 2 + Rl')(R2 + Rk3)(2 ' + k 3 )

Substituting P- 2 in these expressicx it is clar that the subtraction and rounding

can be performed in two gate levels.

The timing fer this scheme is

- determination of the estimate (like in A or B) 20 ns. or 24 ns.

- subtraction of q, and rounding (2 levels) 12 ns.

- set register 5 ns.

TOTAL 47 ns. or 4L ns.
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As in C) theomplee calculation of the quotient could be done using a PLA with

12 inputs (or 9 inputs if 2-bit slices are used) resulting in a total time of 25+5=30 n3.

As comented there, since addition is involved the PLA might have many AND terms.

ii) Calculation of the partial remainder

-selection of the multiple 19 ns.

-subtraction (1-bit or 2-bit slice) 12 ns.

- set register 5 ns.

TOTAL 36 us.

Again the selection can be reduced to 11 n3 resulting in a total of 28 ns.

The longest path is therefore 30 ns if the PLA is used and 41 ns if it is not used.

If the PIA cannot be used, the critical path can be reduced by using faster cir-

cuits in the calculation of the estimate and in the rounding. For example using FAST

circuits would produce a dela" of...

Scheme U: Estimate calculation as part of partial remainder path

From scheme I it can be seen that moving the calculation of the estimate to the

partial remainder path would kcr>,hen it exxessively (at least for the TTM timings being

considered).

What could be done is to move part of the estimate calculation. An attractive

possibility would be to includ. here te calculation of the carry into the 4-bit slice (one
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gate) and to compute also the p's and g's of the 4-bit slice (Figure 12). This would add

one level to the partial remainder path and reduce one level from the quotient path. The

result would be that both paths would be approximately of 35 ns. Of course, different

balances can be achieved if some of the circuits are of a faster technology.
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Ra-nge T-arfcrmntlon rf the Divisor

M. Ercegovac and T. Lang

December 20, 1984

The division algorithm discussed in the previous repo [ERLA84] requires that
the divisor be transformed into the range (1-a) < X < (1+a). In [ERCE83] a
transformation based on the continued product normalization algorithm [ERCE72,
ERCE73] is given. The implementation of this algorithm corresponds to a recurrence
which is difficult to speed-up sufficiently with the available hardware complexity. We
also considered several radix-2 iterative algorithms for the divisor transformation. The
one-bit-per-step alternative has an undesirably long step time while that with the predic.
tion, on the other hand, requires very complex selection rules. All of the above men-
tioned approaches are characterized by a sequential generation of digits used in the divi-
sor transformation thus precluding any overlap between the steps. As an alternative
that has more potential for a faster transformation, we consider here an approach based
on a reciprocal approximation by power series. The method consists of two parts:

(i) Compute M, an approximation to the reciprocal of the divisor X, such that

IM- /I!<

(ii) Multiply the divisor by M to obtain X, such that

X' =XM and X'-1<Sc

1. Power Series Approximation

Let R = lD where 1 : D < 2 is 2X. That is,

D (l.x23...xkxk+--.x,)

and

R = (O.1r 2r 3  r,,)

To compute R, we decompose D such that D = X, + 2-kX2 where

X. (1.x . . xk+.) i X, < 2-2 -k

(0.xL:,..,Xn) 0 - D, < 1 - 2- -k)



By McLau'in's series expansion we have

1 _ 1
D X, + 2-kX2

1 1

XI 1 + 2kX2 ±

x1
R 1

1 + 2-X 2R1

= R[1 - 2-kX2R1 + 2-k(X:Rl)2 -

For the approximation of R we use the first two terms of the expansion and trun-
cate the result to t bits. We get

= - 2-kR X 2 - e,

where

k1 is R1 truncated to u bits,

k is ( 1)2 truncated to s bits,

, 2 is X2 truncated to v bits, and

0 : e, < 2- ' is the truncation error.

We now compute a bound for the approximation error e such that

R=R+e

This error can be written as

e = e . + ep + es

Where

- er is the error due to the use of only two terms of the series,
eR is the error due to the truncation of R , and
es is the error due to the truncation of R I and of X2.



We have Ce)

R = (R1+2-u) - 2-(R 2 +2-s)(X2+2-v) + • T

which results in

R = k + 2-' + 2-" - 2-(k+v)R - 2-(k+*)k 2  2-(k+s+v) + eT

Consequently, since 1 1-2-' and ! 2 S 1-2-v

-(2 - (k + v) + 2 -(k+s)) : e : 2- 1 + 2-N + 2 - 2k

The choice of k, t, s, and v should be made so that

k:sW2 since M= 2R

Let

S= -P

then

2- t + 2-' + 2 - 2k 2- P- 1

and

2-( + v) + 2-( s)  2-p-1

Several choices for k, t, u, and v are possible to satisty these conditions. The
selection should simplify the implementation. For example for a = 2-6, the following
are possible choices:

k=4, t=9, u=9, s=4, and v=4
k=5, t=9, u=8, s=3, and v=3
k=6, t=8, u=9, s=2, and v=2

For a = 2-7:

k=5, t=9, u=10, s=4, v=4
k=6, t=9, u=10, s=3, v=3

() To simplify the notation some of the errors are denoted by their maximum values.
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2. Reciprocal Generation for a = 2-6 (p = 6)

We now consider a detailed design for p = 6. We choose k = 5, t = 9,u = 8, s= 3,
and v=3.

Table I displays the 8-bit truncated reciprocal and its 3-bit truncated square.

Table 1

f 1  t2

X1X2X 3X4X3X 6  zo11z2Z3Z4Z5Z6?Z7Z wowlw 2w3

1.00000 0.11111111 0.111
1.00001 0.11111000 0.111
1.00010 0.11110000 0.111
1.00011 0.11101010 0.110
1.00100 0.11100011 0.110
1.00101 0.11011101 0.101
1.00110 0.11010111 0.101
1.00111 0.11010010 0.101
1.01000 0.11001100 0.100
1.01001 0.11000111 0.100
1.01010 0.11000011 0.100
1.01011 0.10111110 0.100
1.01100 0.10111010 0.011
1.01101 0.10110110 0.011
1.01110 0.10110010 0.011
1.01111 0.10101110 0.011
1.10000 0.10101010 0.011
1.10001 0.10100111 0.011
1.10010 0.10100011 0.011
1.10011 0.10100000 0.011
1.10100 0.10011101 0.010
1.10101 0.10011010 0.010
1.10110 0.10010111 0.010
1.10111 0.10010100 0.010
1.11000 0.10010010 0.010
1.11001 0.10001111 0.010
1.11010 0.10001101 0.010
1.11011 0.10001010 0.010
1.11100 0.10001000 0.010
1.11101 0.10000110 0.010
i.1110 0.10000100 0.010
1.11111 0.10000010 0.010
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These functions can be implemented using a 5-input, 10-output PLA. If this is

not feasable, the table can be decomposed into subtables.

As indicated, the reciprocal R is approximated by

R= 1 -2-'k 2

To perform the subtraction we could complement the subtrahend and add. How-
ever, this would require a range extension of this subtrahend, which complicates the im-
plementation. It seems better to complement the first term (it can be obtained in this
form from the PLA), add, and then complement the result. The use of ones' comple-
ment seems better since it avoids the addition of 1 in the complementation of the result
(note that no end-around-carry is produced during the addition since zl'= 0). The trail-
ing l's produced by the complementation of R1 can be avoided by incrementing a unit in
the last significant position of the complement of R1

The configuration of the addition is shown in Figure 1. The multiplication of A?
by Xf2 is implemented by the addition of three partial products.

Since the reciprocal approximation will be used to multiply the divisor in order to
obtain X', and a radix-4 multiplication is to be used, it is necessary to recode the re-
ciprocal approximation to a radix-4 representation with digit set {-2,-1,0,1,21. Due to the
fact that the most significant bits of the adder have only one operand different from
zero, it is possible to perform the recoding on the two most significant radix-4 digits
without waiting for the carry propagation from the other digits. This is convenient since
we are going to perform the multiplication beginning with the most significant digit of
the reciprocal approximation; that is, the multiplication can begin before finisghing the
addition.

To simplify the recoding the six most significant bits of h1 are computed in nor-
mal (not complemented) form. Table 2 shows the resulting Z, obtained by complement-
ing RI, adding 1 in the least significant position and complementing again positions 0 to
5.
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Table 2

X1x2XX74 rX 6  ZOzlZ2Z3Z4z 5Z6 'Z7 'z8 '  WOW 1W2W3

1.00000 0.11111001 0.111
1.00001 0.11110000 0.111
1.00010 0.11100000 0.111
1.00011 0.11101110 0.110
1.00100 0.11100101 0.110
1.00101 0.11011011 0.101
1.00110 0.11010001 0.101
1.00111 0.11010110 0.101
1.01000 0.11001100 0.100
1.01001 0.11000001 0.100
1.01010 0.11000101 0.100
1.01011 0.10111010 0.100
1.01100 0.10111110 0.011
1.01101 0.10110001 0.011
1.01110 0.10110110 0.011
1.01111 0.10101010 0.011
1.10000 0.10101110 0.011
1.10001 0.10100001 0.011
1.10010 0.10100101 0.011
1.10011 0.10011000 0.011
1.10100 0.I011011 0.010
1.10101 P.10011110 0.010
1.10110 0.10010001 0.010
1.10111 0 10010100 0.010
1.11000 i.10010110 0.010
1.11001 0.10001001 0.010
1.11010 0.10001011 0.010
1.11011 0.10001110 0.010
1.11100 0.10000000 0.010
1.11101 0.10000010 0.010
1.11110 0.10000100 0.010
1.11111 0.10000110 0.010

In order to do the recoding of the first two digits without waiting for the carry,
the third digit has to absorb the carry c5 into position 5, as indicated in the figure. Since
this carry corresponds to the complement of the result, when this carry is 1, a unit has to
be subtracted from the third digit. To absorb this subtraction, we recode the digit to the
set 1-1,0,1,21. The recoding is
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c5z4z5  M2

000 0
001 1
010 2
011 (1)(-1)
100 -1
101 0
110 1
111 -2

Consequently, the rewding of M1 is:

z2Z3t ,

000 0
010 1
100 (1)(-2)
110 (1)(-)
001 1
Ol 2
101 (1)(-1)
111 10)

where I = z4z5

F'mally, the recoding for M0 is:

Z2 M

0 1

For the recoding of M 3 and M4 we use the corresponding bits of the result of the
addition, after complementation. This results in:
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R6'R7R M3

00o 0
001 1
010 1
011 2
100 -2
101 -1
110 -1
111 0

Using a sign-and-magnitude representation of the radix-4 digits we get the follow-
ing switching expreions:

MG,=0 M1 =z2 MOO 2Z 2'

Mls = :2 M11 = z2z3't' + z2'z3t M10 = Z3 t + z 2t + Z2'Z 3t"

M2, = Z45 + z4 tz 5' M 21 = ZE'CS' + Z4z 5c 5 M2 =z5'C5 + Z5C5 '

MUa = R 6 M 31 = R6R 7'R S' + R6WRARS M30 = R7 'R8 + RTRS '

M4= RS M 41 = R8 R9 ' M40 = R9

A design of the adder and the recoding circuit is shown in Figure 2.

3. Divisor Transformation

The divisor is transformed by multiplying it by M. Since the moyt significant digits
of M are ready first, and to use the same carry-save-adder used for the divisio, we per-
form the multiplication beginning with the most significant digit of M. This type of mul-
tiplication usually requires an adder of increasing precision. However, in this case the
most significant bits of X are 1.000000 or 0.111111, so that keeping a few extra bits is
sufficient to determine X .

To reduce the number of multiplication steps, it is possible to load the registers
with MoX and produce 4MoX + M1X in one multiplication step. The configuration of
the multiplication steps is shown in Figure 3.

To put the divisor in the form required by the division, it is necessary to convert
it from the carry-save representation to a conventional representation. This step
corresponds to a carry-propagate addition.
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4. Timing of the Transformation

The time of the transformation is determined by the following components:

a) Determination of Al and R"2 by the PLA. We assume 2 gate delays for this
step.

b) Recoding to obtain M0 and MI. This requires two gate delays.

c) Multiplication step to obtain 4MoX + M1X. This corresponds to 5 gate delays.

d) Three more multiplication steps to multiply by M2, M 3, and M 4. We assume
that the addition and recoding of these digits is overlapped with steps b) and c). This re-
quires 5 x 3 = 15 gate delays.

e) The carry-propagate addition. We assume 15-20 gate delays.

The total is of 3944 gate delays. This corresponds to 8-9 cycles.
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